Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mob DNA ; 14(1): 11, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667401

RESUMO

Accumulating evidence suggests that endogenous retroviruses (ERVs) play an important role in the host response to infection and the development of disease. By analyzing ChIP-sequencing data sets, we show that SARS-CoV-2 infection induces H3K27 acetylation of several loci within the LTR69 subfamily of ERVs. Using functional assays, we identified one SARS-CoV-2-activated LTR69 locus, termed Dup69, which exhibits regulatory activity and is responsive to the transcription factors IRF3 and p65/RELA. LTR69_Dup69 is located about 500 bp upstream of a long non-coding RNA gene (ENSG00000289418) and within the PTPRN2 gene encoding a diabetes-associated autoantigen. Both ENSG00000289418 and PTPRN2 showed a significant increase in expression upon SARS-CoV-2 infection. Thus, our study sheds light on the interplay of exogenous with endogenous viruses and helps to understand how ERVs regulate gene expression during infection.

2.
J Virol ; 97(10): e0080323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37712707

RESUMO

IMPORTANCE: Birds represent important hosts for numerous viruses, including zoonotic viruses and pathogens with the potential to cause major economic losses to the poultry industry. Viral replication and transmission can be inhibited or blocked by the action of antiviral restriction factors (RFs) encoded by the host. One well-characterized RF is tetherin, a protein that directly blocks the release of newly formed viral particles from infected cells. Here, we describe the evolutionary loss of a functional tetherin gene in two galliform birds, turkey (Meleagris gallopavo) and Mikado pheasant (Syrmaticus mikado). Moreover, we demonstrate that the structurally related protein TMCC(aT) exerts antiviral activity in several birds, albeit by a mechanism different from that of tetherin. The evolutionary scenario described here represents the first documented loss-of-tetherin cases in vertebrates.


Assuntos
Proteínas Ligadas por GPI , Galliformes , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Evolução Biológica , Antígeno 2 do Estroma da Médula Óssea/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Galliformes/genética , Evolução Molecular , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo
3.
PLoS One ; 18(4): e0283431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023062

RESUMO

Linker for activation of T cells (LAT) plays a key role in T-cell antigenic signaling in mammals. Accordingly, LAT orthologues were identified in the majority of vertebrates. However, LAT orthologues were not identified in most birds. In this study, we show that LAT gene is present in genomes of multiple extant birds. It was not properly assembled previously because of its GC-rich content. LAT expression is enriched in lymphoid organs in chicken. The analysis of the coding sequences revealed a strong conservation of key signaling motifs in LAT between chicken and human. Overall, our data indicate that mammalian and avian LAT genes are functional homologues with a common role in T-cell signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Membrana , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Membrana/genética , Linfócitos T/metabolismo , Genoma , Galinhas/genética , Galinhas/metabolismo , Mamíferos/genética , Fosfoproteínas/metabolismo
4.
J Immunol ; 208(5): 1128-1138, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35173035

RESUMO

Since the publication of the first chicken genome sequence, we have encountered genes playing key roles in mammalian immunology, but being seemingly absent in birds. One of those was, until recently, Foxp3, the master transcription factor of regulatory T cells in mammals. Therefore, avian regulatory T cell research is still poorly standardized. In this study we identify a chicken ortholog of Foxp3 We prove sequence homology with known mammalian and sauropsid sequences, but also reveal differences in major domains. Expression profiling shows an association of Foxp3 and CD25 expression levels in CD4+CD25+ peripheral T cells and identifies a CD4-CD25+Foxp3high subset of thymic lymphocytes that likely represents yet undescribed avian regulatory T precursor cells. We conclude that Foxp3 is existent in chickens and that it shares certain functional characteristics with its mammalian ortholog. Nevertheless, pathways for regulatory T cell development and Foxp3 function are likely to differ between mammals and birds. The identification and characterization of chicken Foxp3 will help to define avian regulatory T cells and to analyze their functional properties and thereby advance the field of avian immunology.


Assuntos
Galinhas/genética , Galinhas/imunologia , Fatores de Transcrição Forkhead/genética , Linfócitos T Reguladores/imunologia , Sequência de Aminoácidos/genética , Animais , Sequência de Bases , Diferenciação Celular/imunologia , Perfilação da Expressão Gênica , Genoma/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária/imunologia , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência
5.
Viruses ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36680044

RESUMO

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are key RNA virus sensors belonging to the RIG-I-like receptor (RLR) family. The activation of the RLR inflammasome leads to the establishment of antiviral state, mainly through interferon-mediated signaling. The evolutionary dynamics of RLRs has been studied mainly in mammals, where rare cases of RLR gene losses were described. By in silico screening of avian genomes, we previously described two independent disruptions of MDA5 in two bird orders. Here, we extend this analysis to approximately 150 avian genomes and report 16 independent evolutionary events of RIG-I inactivation. Interestingly, in almost all cases, these inactivations are coupled with genetic disruptions of RIPLET/RNF135, an ubiquitin ligase RIG-I regulator. Complete absence of any detectable RIG-I sequences is unique to several galliform species, including the domestic chicken (Gallus gallus). We further aimed to determine compensatory evolution of MDA5 in RIG-I-deficient species. While we were unable to show any specific global pattern of adaptive evolution in RIG-I-deficient species, in galliforms, the analyses of positive selection and surface charge distribution support the hypothesis of some compensatory evolution in MDA5 after RIG-I loss. This work highlights the dynamic nature of evolution in bird RNA virus sensors.


Assuntos
Vírus de RNA , RNA , Animais , Antivirais , Aves/virologia , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Imunidade Inata , RNA Helicases , Vírus de RNA/fisiologia
6.
Viruses ; 13(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960774

RESUMO

The chicken Tva cell surface protein, a member of the low-density lipoprotein receptor family, has been identified as an entry receptor for avian leukosis virus of classic subgroup A and newly emerging subgroup K. Because both viruses represent an important concern for the poultry industry, we introduced a frame-shifting deletion into the chicken tva locus with the aim of knocking-out Tva expression and creating a virus-resistant chicken line. The tva knock-out was prepared by CRISPR/Cas9 gene editing in chicken primordial germ cells and orthotopic transplantation of edited cells into the testes of sterilized recipient roosters. The resulting tva -/- chickens tested fully resistant to avian leukosis virus subgroups A and K, both in in vitro and in vivo assays, in contrast to their susceptible tva +/+ and tva +/- siblings. We also found a specific disorder of the cobalamin/vitamin B12 metabolism in the tva knock-out chickens, which is in accordance with the recently recognized physiological function of Tva as a receptor for cobalamin in complex with transcobalamin transporter. Last but not least, we bring a new example of the de novo resistance created by CRISPR/Cas9 editing of pathogen dependence genes in farm animals and, furthermore, a new example of gene editing in chicken.


Assuntos
Vírus da Leucose Aviária/fisiologia , Proteínas Aviárias/fisiologia , Galinhas/virologia , Receptores Virais/fisiologia , Vitamina B 12/metabolismo , Animais , Vírus da Leucose Aviária/classificação , Proteínas Aviárias/genética , Embrião de Galinha , Feminino , Mutação da Fase de Leitura , Edição de Genes , Técnicas de Inativação de Genes , Masculino , Ácido Metilmalônico/sangue , Receptores Virais/genética
7.
Viruses ; 13(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834938

RESUMO

Two key cytosolic receptors belonging to the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family sense the viral RNA-derived danger signals: RIG-I and melanoma differentiation-associated protein 5 (MDA5). Their activation establishes an antiviral state by downstream signaling that ultimately activates interferon-stimulated genes (ISGs). While in rare cases RIG-I gene loss has been detected in mammalian and avian species, most notably in the chicken, MDA5 pseudogenization has only been detected once in mammals. We have screened over a hundred publicly available avian genome sequences and describe an independent disruption of MDA5 in two unrelated avian lineages, the storks (Ciconiiformes) and the rallids (Gruiformes). The results of our RELAX analysis confirmed the absence of negative selection in the MDA5 pseudogene. In contrast to our prediction, we have shown, using multiple dN/dS-based approaches, that the MDA5 loss does not appear to have resulted in any compensatory evolution in the RIG-I gene, which may partially share its ligand-binding specificity. Together, our results indicate that the MDA5 pseudogenization may have important functional effects on immune responsiveness in these two avian clades.


Assuntos
Proteínas Aviárias/genética , Aves/genética , Proteína DEAD-box 58/genética , Deleção de Genes , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/imunologia , Aves/classificação , Aves/imunologia , Proteína DEAD-box 58/química , Proteína DEAD-box 58/imunologia , Humanos , Imunidade Inata , Modelos Moleculares , Filogenia , Pseudogenes , Alinhamento de Sequência
8.
Retrovirology ; 18(1): 15, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158079

RESUMO

BACKGROUND: Human Syncytin-1 is a placentally-expressed cell surface glycoprotein of retroviral origin. After interaction with ASCT2, its cellular receptor, Syncytin-1 triggers cell-cell fusion and formation of a multinuclear syncytiotrophoblast layer of the placenta. The ASCT2 receptor is a multi-spanning membrane protein containing a protruding extracellular part called region C, which has been suggested to be a retrovirus docking site. Precise identification of the interaction site between ASCT2 and Syncytin-1 is challenging due to the complex structure of ASCT2 protein and the background of endogenous ASCT2 gene in the mammalian genome. Chicken cells lack the endogenous background and, therefore, can be used to set up a system with surrogate expression of the ASCT2 receptor. RESULTS: We have established a retroviral heterologous chicken system for rapid and reliable assessment of ectopic human ASCT2 protein expression. Our dual-fluorescence system proved successful for large-scale screening of mutant ASCT2 proteins. Using this system, we demonstrated that progressive deletion of region C substantially decreased the amount of ASCT2 protein. In addition, we implemented quantitative assays to determine the interaction of ASCT2 with Syncytin-1 at multiple levels, which included binding of the soluble form of Syncytin-1 to ASCT2 on the cell surface and a luciferase-based assay to evaluate cell-cell fusions that were triggered by Syncytin-1. Finally, we restored the envelope function of Syncytin-1 in a replication-competent retrovirus and assessed the infection of chicken cells expressing human ASCT2 by chimeric Syncytin-1-enveloped virus. The results of the quantitative assays showed that deletion of the protruding region C did not abolish the interaction of ASCT2 with Syncytin-1. CONCLUSIONS: We present here a heterologous chicken system for effective assessment of the expression of transmembrane ASCT2 protein and its interaction with Syncytin-1. The system profits from the absence of endogenous ASCT2 background and implements the quantitative assays to determine the ASCT2-Syncytin-1 interaction at several levels. Using this system, we demonstrated that the protruding region C was essential for ASCT2 protein expression, but surprisingly, not for the interaction with Syncytin-1 glycoprotein.


Assuntos
Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Produtos do Gene env/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas da Gravidez/metabolismo , Animais , Linhagem Celular , Galinhas , Feminino , Fibroblastos/virologia , Fluorescência , Produtos do Gene env/genética , Humanos , Microscopia Confocal , Placenta/virologia , Gravidez , Proteínas da Gravidez/genética
9.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504597

RESUMO

The Avian sarcoma and leukosis viruses (ASLVs) are important chicken pathogens. Some of the virus subgroups, including ASLV-A and K, utilize the Tva receptor for cell entrance. Though Tva was identified three decades ago, its physiological function remains unknown. Previously, we have noted an intriguing resemblance and orthology between the chicken gene coding for Tva and the human gene coding for CD320, a receptor involved in cellular uptake of transcobalamin (TC) in complex with vitamin B12/cobalamin (Cbl).Here we show that both the transmembrane and the glycosylphosphatidylinositol (GPI)-anchored form of Tva in the chicken cell line DF-1 promotes the uptake of Cbl with help of expressed and purified chicken TC. The uptake of TC-Cbl complex was monitored using an isotope- or fluorophore-labeled Cbl. We show that (i) TC-Cbl is internalized in chicken cells; and (ii) the uptake is lower in the Tva-knockout cells and higher in Tva-overexpressing cells when compared with wild type chicken cells. The relation between physiological function of Tva and its role in infection was elaborated by showing that infection with ASLV subgroups (targeting Tva) impairs the uptake of TC-Cbl, while this is not the case for cells infected with ASLV-B (not recognized by Tva). In addition, exposure of the cells to a high concentration of TC-Cbl alleviates the infection with Tva-dependent ASLV.IMPORTANCE: We demonstrate that the ASLV receptor Tva participates in the physiological uptake of TC-Cbl, because the viral infection suppresses the uptake of Cbl and vice versa. Our results pave the road for future studies addressing the issues: (i) whether a virus infection can be inhibited by TC-Cbl complexes in vivo; and (ii) whether any human virus employs the human TC-Cbl receptor CD320. In broader terms, our study sheds light on the intricate interplay between physiological roles of cellular receptors and their involvement in virus infection.

10.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238588

RESUMO

Tetherin/BST-2 is an antiviral protein that blocks the release of enveloped viral particles by linking them to the membrane of producing cells. At first, BST-2 genes were described only in humans and other mammals. Recent work identified BST-2 orthologs in nonmammalian vertebrates, including birds. Here, we identify the BST-2 sequence in domestic chicken (Gallus gallus) for the first time and demonstrate its activity against avian sarcoma and leukosis virus (ASLV). We generated a BST-2 knockout in chicken cells and showed that BST-2 is a major determinant of an interferon-induced block of ASLV release. Ectopic expression of chicken BST-2 blocks the release of ASLV in chicken cells and of human immunodeficiency virus type 1 (HIV-1) in human cells. Using metabolic labeling and pulse-chase analysis of HIV-1 Gag proteins, we verified that chicken BST-2 blocks the virus at the release stage. Furthermore, we describe BST-2 orthologs in multiple avian species from 12 avian orders. Previously, some of these species were reported to lack BST-2, highlighting the difficulty of identifying sequences of this extremely variable gene. We analyzed BST-2 genes in the avian orders Galliformes and Passeriformes and showed that they evolve under positive selection. This indicates that avian BST-2 is involved in host-virus evolutionary arms races and suggests that BST-2 antagonists exist in some avian viruses. In summary, we show that chicken BST-2 has the potential to act as a restriction factor against ASLV. Characterizing the interaction of avian BST-2 with avian viruses is important in understanding innate antiviral defenses in birds.IMPORTANCE Birds are important hosts of viruses that have the potential to cause zoonotic infections in humans. However, only a few antiviral genes (called viral restriction factors) have been described in birds, mostly because birds lack counterparts of highly studied mammalian restriction factors. Tetherin/BST-2 is a restriction factor, originally described in humans, that blocks the release of newly formed virus particles from infected cells. Recent work identified BST-2 in nonmammalian vertebrate species, including birds. Here, we report the BST-2 sequence in domestic chicken and describe its antiviral activity against a prototypical avian retrovirus, avian sarcoma and leukosis virus (ASLV). We also identify BST-2 genes in multiple avian species and show that they evolve rapidly in birds, which is an important indication of their relevance for antiviral defense. Analysis of avian BST-2 genes will shed light on defense mechanisms against avian viral pathogens.


Assuntos
Proteínas Aviárias/imunologia , Vírus do Sarcoma Aviário/imunologia , Antígeno 2 do Estroma da Médula Óssea/imunologia , Evolução Molecular , Galliformes/imunologia , Sarcoma Aviário/imunologia , Sequência de Aminoácidos , Animais , Proteínas Aviárias/genética , Vírus do Sarcoma Aviário/genética , Vírus do Sarcoma Aviário/patogenicidade , Antígeno 2 do Estroma da Médula Óssea/genética , Linhagem Celular , Fibroblastos/imunologia , Fibroblastos/virologia , Galliformes/genética , Galliformes/virologia , Regulação da Expressão Gênica , Células HEK293 , HIV-1/genética , HIV-1/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Passeriformes/genética , Passeriformes/imunologia , Passeriformes/virologia , Sarcoma Aviário/genética , Sarcoma Aviário/virologia , Seleção Genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Liberação de Vírus , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
11.
Proc Natl Acad Sci U S A ; 117(4): 2108-2112, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31964810

RESUMO

Avian leukosis virus subgroup J (ALV-J) is an important concern for the poultry industry. Replication of ALV-J depends on a functional cellular receptor, the chicken Na+/H+ exchanger type 1 (chNHE1). Tryptophan residue number 38 of chNHE1 (W38) in the extracellular portion of this molecule is a critical amino acid for virus entry. We describe a CRISPR/Cas9-mediated deletion of W38 in chicken primordial germ cells and the successful production of the gene-edited birds. The resistance to ALV-J was examined both in vitro and in vivo, and the ΔW38 homozygous chickens tested ALV-J-resistant, in contrast to ΔW38 heterozygotes and wild-type birds, which were ALV-J-susceptible. Deletion of W38 did not manifest any visible side effect. Our data clearly demonstrate the antiviral resistance conferred by precise CRISPR/Cas9 gene editing in the chicken. Furthermore, our highly efficient CRISPR/Cas9 gene editing in primordial germ cells represents a substantial addition to genotechnology in the chicken, an important food source and research model.


Assuntos
Vírus da Leucose Aviária/genética , Leucose Aviária/imunologia , Proteínas Aviárias/genética , Doenças das Aves Domésticas/imunologia , Trocador 1 de Sódio-Hidrogênio/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Animais Geneticamente Modificados/virologia , Leucose Aviária/genética , Leucose Aviária/virologia , Vírus da Leucose Aviária/classificação , Vírus da Leucose Aviária/fisiologia , Proteínas Aviárias/imunologia , Sistemas CRISPR-Cas , Galinhas , Resistência à Doença , Feminino , Edição de Genes , Masculino , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Trocador 1 de Sódio-Hidrogênio/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...